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UNSTEADY MOTION OF A FLUID NEAR A DISK ROTATING IN A MAGNETIC

FIELD
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The effect of 2 magnetic field on the velocity distribution in a fluid
close to an unsteadily rotating disk is investigated.

Rozin [1] investigated the unsteady laminar bound-
ary layer near a rotating unbounded disk for particular
laws of variation of the circular velocity: w(t) = wotn
and w(t) = wy eft,

Following Rozin's method, we will calculate the un-
steady motion of an incompressible, electrically con-~
ducting, viscous fluid near a similar unbounded disk
in the presence of a constant transverse magnetic
field. For the radial velocity of the external potential
flow we choose the law u; = ar(em)m, and the space~
time relationship for the circular velocity of the disk
has the form v, = Qr(em)n. The calculations show that
the magnetic field has an appreciable effect on the vel-
ocity profile in the boundary layer.

The problem of steady motion was solved in [2) by
the Karman-Pohlhausen integral method.

EQUATIONS OF MOTION

Let a disk of infinite radius, previously at rest,
begin to rotate in its own plane (z = 0) around the axis
r = 0 with variable angular velocity. We assume that
the fluid is incompressible, viscous, and electrically
conducting and occupies the region z > 0. The applied
magnetic field is directed perpendicular to the plane
of the disk and is uniform and constant. The magnetic
Prandtl number is assumed to be so small that elec-
tric currents in the fluid have no effect on the applied
magnetic field.

In cylindrical coordinates the Navier-Stokes equa-
tions for unsteady motion in the presence of a mag-
netic field have the form [3]:
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On the assumption that
Uy =ar (eﬂt>m and v, = Qr(eﬂt)n’ (2)

the initial and boundary conditions of system (1) will
be

u=v=w=0 for t < 0 and for any z,

_ _ - —_ Qi\n e
u=w=0,0=0,=Qr(")" forz =0 and for
any z. (3)

u=u,=ar()", v=0 forz—w

The pressure distribution when z — « will be de-
termined from the condition
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We introduce the following dimensionless quantities:

u=QrU(Z, T), v=QrV(Z, 1),
w=)VvQW(Z, T), p=——§)— ar?e™ x
mT O'B(Z)
x | Qm +ae™ + 5 4+ pvQP(Z, T),

r=VvQR, z=V~QZ, t=(/QT,
k=a/Q, \=o0BypQ. (5)

Substituting (5) in Eq. (1), we obtain the system
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with boundary conditions
U=W =0, V=2 for Z =0,
U=k, V=0 for Z—> . (N

METHOD OF SOLUTION

To integrate system (6) with boundary conditions
(7) we seek solutions of the form [1,4]:
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U= folm) +fim)e™ + -],
V=¢"lgom) +gim)e™ + -0,

= — 4" [fy () +frme™ + -,
P=2"[hy () +h ()€ 4 -1, (8)

where 5 = Z/2. Functions fi(n), f;'(n), and g;(n) satisfy
the boundary conditions

Fo) =fo(m) =fim) = fi() =0 )
for n=20,
ge(n) =1, g m=0
fo(m) =4k, fi(n)=0 } for m - o, )
go(m =g;(n)=0

wherei=1, 2, 3, ... .
From (6) and (8) we obtain the system of equations

(mfy + 2mfy €™ 4 -+ 1+ € 1 — 2fofo + -1 —
gt [g(2)+ 2g0glemr+ S l=km4A) +

m L., e ’ 7 oM
+ ke T“‘z—[fo + £ €D — Mg+ fe e,

(nga -+ (m + ) g™+ -1+ 26" (fago—foto + -1 =

1 ” LN () .
= Mg ge =M lg g T,
(mfo + 2mfye™ 4 -1 —2¢" (fofo+ - 1=
| S , n
== U R B+ 7 & ). (10)

System (10) can be solved if 2n — m is divisible by
m.

SCLUTION FOR CASEn=m

Substituting n = m in Eq. (10) and equating the coef-
ficients of equal powers of eMT  we obtain the follow-
ing system of equations for the first two approxima-
tions:
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The solutions of Egs. (11) and (12) are
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In the absence of the magnetic field (A = 0) and for
m =1 and k = 0 we obtain Rozin's result [1] from re-
lationships (14) and (15).

The velocity profiles are shown in Figs. 1 and 2.
With increase in the magnetic field the radial velocity
increases, whereas the circular velocity decreases.
This result agrees with the data of [2] for the case of
steady motion of a fluid near a rotating disk in the
presence of a transverse constant magnetic field.

SOLUTION FOR CASE m = 2n

Substituting m = 2n in Eq. (10) and equating the co-
efficients of equal powers of eMT we obtain the follow-
ing system of equations for the first approximation:
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Its solution for k = 0 will be:
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Fig. 1. Distribution of radial velocity for k = 1: 1) A = 0;
2) A=1/2;3) A= 1.
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Fig. 2. Distribution of circular velocity for k = 1:
DA=0; 2)A=1/2; 3} A=1.
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For A = 0 and for n = 1 formulas (17) are identical
with the relationships obtained by Rozin [1].

NOTATION

r, 0, and zare the coordinates in the radial, circular,
and axial directions; tis the time; u, v, and ware the ra-
dial, circular, and axial velocity components; ug is the
radial velocity of external potential flux; vy is the cir-
cular velocity of thedisk; w(t)isthe angular velocity of
thedisk; pis thepressure; p isthedensity; visthekine-
matic viscosity; By is the characteristic of the ap-
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plied magnetic field; o is the electrical conductivity of
fluid; R and Z are dimensionless coordinates in the
radial and axial directions; n = Z/2 is a dimensionless
coordinate; T is dimensionless time; U, V, and Ware the
radial, circular, and axial components of dimension-
less velocity; P is dimensionless pressure; a, 2, and
wp are constants with dimensionality t™% m, n, and ¢
are positive numbers; k = a/Q is a constant; A =

= ch%/pQ is the parameter characterizing the magnetic
field.

REFERENCES

1. L. A. Rozin, Izv. AN SSSR, Mekhanika i mash-
inostroenie, no. 4, 1960.

2. K. Jagadeesan, Bul. Inst. Pol. Iasi, tom X
(X1V), fasc. 3—4, 81, 1964.

3. R. E. Kelly, Trans. ASME [Russian translation];
Journal of Applied Mechanics, Ser. E, no. 3, 205,
1964.

4. L. A. Rozin, PMM, vol. 21, no. 3, 1957.

10 October 1966 Ianos-Bolyali State University

Cluj, Rumania



